On the Role of Partition Inequalities in Classical Algorithms for Steiner Problems in Graphs
نویسنده
چکیده
The Steiner tree problem is a classical, well-studied, NP-hard optimization problem. Here we are given an undirected graph G = (V,E), a subset R of V of terminals, and nonnegative costs ce for all edges e in E. A feasible Steiner tree for a given instance is a tree T in G that spans all terminals in R. The goal is to compute a feasible Steiner tree of smallest cost. In this thesis we will focus on approximation algorithms for this problem: a c-approximation algorithm is an algorithm that returns a tree of cost at most c times that of an optimum solution for any given input instance. In a series of papers throughout the last decade, the approximation guarantee c for the Steiner tree problem has been improved to the currently best known value of 1.55 [39]. Robins’ and Zelikovsky’s algorithm as well as most of its predecessors are greedy algorithms. Apart from algorithmic improvements, there also has been substantial work on obtaining tight linear-programming relaxations for the Steiner tree problem. Many undirected and directed formulations have been proposed in the course of the last 25 years; their use, however, is to this point mostly restricted to the field of exact optimization. There are few examples of algorithms for the Steiner tree problem that make use of these LP relaxations. The best known such algorithm for general graphs is a 2-approximation (for the more general Steiner forest problem) due to Agrawal, Klein and Ravi [2]. Their analysis is tight as the LP-relaxation used in their work is known to be weak: it has an IP/LP gap of approximately 2. Most recent efforts to obtain algorithms for the Steiner tree problem that are based on LP-relaxations has focused on directed relaxations. In this thesis we present an undirected relaxation and show that the algorithm of Robins and Zelikovsky returns a Steiner tree whose cost is at most 1.55 times its optimum solution value. In fact, we show that this algorithm can be viewed as a primal-dual algorithm. The Steiner forest problem is a generalization of the Steiner tree problem. In the problem, instead of only one set of terminals, we are given more than one terminal set. An feasible Steiner forest is a forest that connects all terminals in the same terminal set for each terminal set. The goal is to find a minimum cost feasible Steiner forest. In this thesis, a new set of facet defining inequalities for the polyhedra of the Steiner forest is introduced.
منابع مشابه
Nordhaus-Gaddum type results for the Harary index of graphs
The emph{Harary index} $H(G)$ of a connected graph $G$ is defined as $H(G)=sum_{u,vin V(G)}frac{1}{d_G(u,v)}$ where $d_G(u,v)$ is the distance between vertices $u$ and $v$ of $G$. The Steiner distance in a graph, introduced by Chartrand et al. in 1989, is a natural generalization of the concept of classical graph distance. For a connected graph $G$ of order at least $2$ ...
متن کاملThe Steiner diameter of a graph
The Steiner distance of a graph, introduced by Chartrand, Oellermann, Tian and Zou in 1989, is a natural generalization of the concept of classical graph distance. For a connected graph $G$ of order at least $2$ and $Ssubseteq V(G)$, the Steiner distance $d(S)$ among the vertices of $S$ is the minimum size among all connected subgraphs whose vertex sets contain $S$. Let $...
متن کاملThe Steiner connectivity problem
The Steiner connectivity problem is a generalization of the Steiner tree problem. It consists in finding a minimum cost set of simple paths to connect a subset of nodes in an undirected graph. We show that polyhedral and algorithmic results on the Steiner tree problem carry over to the Steiner connectivity problem; namely, the Steiner cut and the Steiner partition inequalities, as well as the a...
متن کاملMETA-HEURISTIC ALGORITHMS FOR MINIMIZING THE NUMBER OF CROSSING OF COMPLETE GRAPHS AND COMPLETE BIPARTITE GRAPHS
The minimum crossing number problem is among the oldest and most fundamental problems arising in the area of automatic graph drawing. In this paper, eight population-based meta-heuristic algorithms are utilized to tackle the minimum crossing number problem for two special types of graphs, namely complete graphs and complete bipartite graphs. A 2-page book drawing representation is employed for ...
متن کاملNew results on upper domatic number of graphs
For a graph $G = (V, E)$, a partition $pi = {V_1,$ $V_2,$ $ldots,$ $V_k}$ of the vertex set $V$ is an textit{upper domatic partition} if $V_i$ dominates $V_j$ or $V_j$ dominates $V_i$ or both for every $V_i, V_j in pi$, whenever $i neq j$. The textit{upper domatic number} $D(G)$ is the maximum order of an upper domatic partition. We study the properties of upper domatic number and propose an up...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006